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Abstract 

New, gauge-independent, second-order Lagrangian for the motion of classical, charged test parti- 
cles is used to derive the corresponding Hamiltonian formulation. For this purpose a (relatively little 
known) Hamiltonian description of theories derived from second-order Lagrangians is presented. 
Unlike in the standard approach, the canonical momenta arising here are explicitly gauge-invariant 
and have a clear physical interpretation. The reduced symplectic form obtained this way is (al- 
most) equivalent to Souriau’s form. This approach illustrates a new method of deriving equations 
of motion from field equations. 0 1998 Published by Elsevier Science B.V. 
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1. Introduction 

In [I] a new method of deriving equations of motion from field equations was proposed. 

The method is based on a new idea of renormalization in classical field theory and a deep 
analysis of the geometric structure of generators of its symmetry group. It may be applied 
to any special-relativistic, Lagrangian field theory. When applied to electrodynamics, it 
leads uniquely to a manifestly gauge-invariant, second-order Lagrangian L: for the motion 
of charged test particles: 

L = Lpaticle + Lint = - Jl - v2 (m - al*u”M;;(t, q, v)), 
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where uI-1 denotes the (normalized) four-velocity vector 

(2) 

and uiL := u”V,U/’ is the particle’s acceleration (we use the Heaviside-Lorentz system 
of units with the velocity of light c = 1). The skew-symmetric tensor M,fA((t. q, v) is 
equal to the amount of the angular-momentum of the field, which is acquired by our 
physical system, when the Coulomb field f$“’ accompanying the particle moving with 
constant velocity v through the space-time point y = (t. q) is added to the background 
(external) field. More precisely, the total energy-momentum tensor corresponding to the 
sum of the background field fP,, and the above Coulomb field decomposes in a natu- 
ral way into a sum of (1) terms quadratic in the background field, (2) terms quadratic in 
the Coulomb field, and (3) mixed terms describing their interaction. The quantity II~$ 
is equal to this part of the total angular-momentum M,,,,. which we obtain integrating 
only the mixed terms of the energy-momentum tensor (see Section 3 for detailed 
discussion). 

The above result is a by-product of a consistent theory of interacting particles and fields 
(cf. ]2,3]), called electrodynamics of moving particles. 

We have proved in [I] that the new Lagrangian ( 1) differs from the standard one, 

L = ~particle + Lint = - d= (m - euvAp(r. q)). (3) 

by (gauge-dependent) boundary corrections only. We have a similar situation in general 
relativity, which may be derived either from the gauge-invariant, second-order Hilbert La- 
grangian or-equivalently-from the first-order, coordinate-dependent Einstein Lagrangian, 
quadratic with respect to the connection coefficients. 

Both Lagrangians generate, therefore, the same equations of motion for test particles in a 
given external field. In the present paper we explicitly derive these equations and construct 
the gauge-invariant Hamiltonian version of this theory. 

Standard Hamiltonian formalism, based on the gauge-dependent Lagrangian (3), leads 
to the gauge-dependent Hamiltonian 

H(r. q, p) = ,/m2 + (p + eA(t. 9))’ + eAo(t, q), 

and the gauge-dependent momentum 

(4) 

pk := pkk’” - e&(t, q) = mUk - e&(t, q) (3 

canonically conjugate to the particle’s position qk. This gauge-dependence leads to seri- 
ous conceptual difficulties, if we want to describe quantized particles in a time-dependent 
field (e.g. a plane wave), and have no privileged gauge (e.g. time-independent) at our 
disposal. 

As was observed by Souriau (see [5]), we may replace the non-physical momentum (5) 
in the description of the phase space of this theory by the gauge-invariant quantity pkin. 
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The price we pay for this change is that the canonical pre-symplectic form, corresponding 
to the theory of free particles 

R = dpp A dqb, (6) 

has to be replaced by its deformation 

S2.y := B - e fpu dq” A dq". 

where e is the particle’s charge. 

(7) 

Both Q and G’s are defined on the “mass-shell” of the kinetic momentum, i.e. on the 
surface (P~‘“)~ = -m2 in the cotangent bundle T*M over the space-time M (we use the 
Minkowskian metric with the signature (-, +, +, +)). These forms contain the entire in- 
formation about dynamics: for free particles the admissible trajectories are those, whose 
tangent vectors belong to the degeneracy distribution of R. Souriau noticed that replac- 
ing (6) by its deformation (7) we obtain the theory of motion of the particle in a given 
electromagnetic field fFv. 

The new approach, proposed in the present paper, is based on Lagrangian (1). It leads 
directly to a perfectly gauge-invariant Hamiltonian, having a clear physical interpretation 
as the sum of two terms: (1) kinetic energy mu0 and (2) “interaction energy” equal to the 
amount of held energy acquired by our physical system, when the particle’s Coulomb field 
is added to the background field. 

When formulated in terms of pre-symplectic geometry, our approach leads uniquely to a 
new form a,: 

fiN := 62 - e h,,, dq” A dq” , (8) 

where 

(brackets denote antisymmetrization), i.e. we prove the following: 

Theorem 1. One-dimensional submanifolds of the particle’s mass shell, whose tungent 
vectors belong to the degeneracy distribution of the form fiN restricted to the shell, are 
precisely the trajectories of test particles moving in the external electromagneticjeld ,f,,,. 

It is easy to see that both fi, and Q N, although different, have the same degeneracy 
vectors, because h and f give the same value on the velocity vector u V : 

u”&, = U”fP”. (10) 

Hence, both define the same equations of motion. We stress, however, that our sZ,v is unique!\ 
obtained from the gauge-invariant Lagrangian (1) via the Legendre transformation. 

The paper is organized as follows. In Section 2 we sketch briefly the (relatively little 
known) Hamiltonian formulation of theories arising from the second-order Lagrangian. 
In Section 3 we prove explicitly that the Euler-Lagrange equations derived from l are 



equivalent to the Lorentz equations of motion. Finally, Section 4 contains the gauge-invariant 
Hamiltonian structure of the theory. The most involved proofs are shifted to Appendix A. 

2. Canonical formalism for a second-order Lagrangian theory 

Consider a theory described by the second-order Lagrangian L = L(q’ , 4 (4’) (to sim- 
plify the notation we will skip the index “i” corresponding to different degrees of freedom 
q’ ; extension of this approach to higher-order Lagrangians is straightforward). Introducing 
auxiliary variables II = 4 we can treat our theory as a first-order one with Lagrangian 
constraints 4 := 4 - u = 0 on the space of Lagrangian variables (q, 4, v, ti). Dynamics is 
generated by the following symplectic relation: 

(11) 

where (p, n) are momenta canonically conjugate to q and u, respectively. Because L is 
defined only on the constraint submanifold, its derivative dl, is not uniquely defined and 
has to be understood as a collection of all rhe covectors which are compatible with the 
derivative of the function along constraints (cf. [6]). This means that the left-hand side 
is defined up to p((i - v), where p are Lagrange multipliers corresponding to constraints 
4 = 0. We conclude that p = p is arbitrary and ( 11) is equivalent to the system of dynamical 
equations: 

(12) 

The last equation implies the definition of the canonical momentum p: 

Its time derivative 

I. (15) 

(16) 

is equivalent, due to the second canonical equation (I 3), to the Euler-Lagrange equation: 

(17) 

To obtain Hamiltonian description (see e.g. [4]) we simply apply the Legendre transforma- 
tion to formula (11): 

- dH=@dq--gdp+Yrdv-tidn. (18) 
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where H(cJ. p, u, n) = p u + n -i - L(q, v, zi). In this formula we have to insert ti = 
ti(q, v, n), calculated from Eq. (12). Let us observe that H obtained this way is linear with 
respect to the momentum p. This is a characteristic feature of the Hamiltonians obtained 
from a second-order theory. 

In generic situation, Euler-Lagrange equations (17) are of the fourth-order. The corre- 
sponding four Hamiltonian equations describe, therefore, the evolution of q and its deriva- 
tives up to third-order. Due to Hamiltonian equations implied by symplectic relation ( 18). 
the information about successive derivatives of y is carried by (v. n, p): 
_ t! describes 4: 

aH 

q=ap=“’ 
and the constraint C$ = 0 is reproduced due to linearity of H with respect to p, 

_ n contains information about ;i: 

aH 
iI=---, 

an 

- p contains information about 9 : 

aH aL 
“=-au=~-p. 

the true dynamical equation reads: 

aH aL 

p=-G-=dcI. 

(19) 

(20) 

(21) 

(22) 

3. Equations of motion from the variational principle 

In this section we explicitly derive the particle’s equations of motion from the variational 
principle based on the gauge-invariant Lagrangian (1). The Euler-Lagrange equations for 
a second-order Lagrangian theory are given by 

ar. 
Pk=aqk’ (23) 

where, as we have seen in the previous section, the momentum Pk canonically conjugate to 
the particle’s position # is defined as 

ac 
pk := avk - 7tk 

and 

Now, 

(24) 
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where rp’ and .r,‘ii are the static momentum and the angular-momentum of the interaction 
tensor. They are defined as follows: we consider the sum of the (given) background held 
fLLL, and the boosted Coulomb field f,(>it”) accompanying the particle moving with constant 
four-velocity u and passing through the space-time point !’ = (1. q). Being bi-linear in 
fields, the energy-momentum tensor T”““’ of the total field 

r;:‘:“’ .f,L ” f$; l’ ) (27) 

may be decomposed into three terms: the energy-momentum tensor of the background 
field Ttield, the Coulomb energy-momentum tensor Tpariic’e, which is composed of terms 
quadratic in f(?“‘“’ /1” and the “interaction tensor” Tint, containing mixed terms: 

T total = Ttield + Tpartick + Tint 
(28) 

Interaction quantities (labelled with “int”) are those obtained by integrating appropriate 
components of Tint. Because all the three tensors are conserved outside of the sources 
(i.e. outside of two trajectories: the actual trajectory of our particle and the straight line 
passing through the space-time point !: with four-velocity u), the integration gives the 
same result when performed over any asymptotically flat Cauchy 3-surface passing 
through .v. 

In particular, rint and sint may be written in terms of the laboratory-frame components 
of the electric and magnetic fields as follows: 

r;n’(t. q, v) = 
s 

d”x (xk - qd(DDo + BBo). 
z 

~z(t, q, V) = E,,ij 
J’ 

d’x (x’ - qi)(D X BCJ + Do X B)‘, 

c 

(29) 

(30) 

where D and B are components of the external field f, whereas Do and Bn are components 
of f(y.“), i.e. 

e 1 -v2 

D”(x; qt v, = 4nlx - 91’ (1 - v? + (v(x - q)/lx - q1)2)3/2 
6 - q)* (31) 

Bo(x; q, v) = v x Do(x; q, v). (32) 

It may be easily seen that quantities r-p’ and .$’ are not independent. They fulfill the 
following condition: 

int 
Sk = 

m I int 
+klv ‘rn (33) 

To prove this relation let us observe that in the particle’s rest-frame (see Appendix A 
for the definition) the angular-momentum corresponding to Tint vanishes (cf. [ 11). When 
translated to the language of the laboratory frame, this is precisely equivalent to the above 
relation. 

lnserting (33) into (26) we finally get 

(34) 
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The quantity ry depends upon time via the time dependence of the external fields (D(t, x). 

B(t, x)), the particle’s position q and the particle’s velocity v, contained in formulae (31) 
and (32) for the particle’s Coulomb field. 

Now, we are ready to compute pk from (24): 

(3.5) 

Observe, that the momentum Pk depends upon time, particle’s position and velocity but 
also on particle’s acceleration. Hovewer, using (29) one easily shows (see Appendix A): 

Lemma 2. 

if& an1 ~-- 
ad ad 

= 0. (36) 

Hence, the term proportional to ti’ vanishes. Moreover, the following lemma can be 
proved (see also Appendix A): 

Lemma 3. 

~+v~!%=_p;nf, 
a4 

where we denote 

pP(r. q, v) = s d”x (D x B. + Do x B)k . 

1 

We see that pk int is the spatial part of the “interaction momentum”: 

Pj,“‘(L q. v) = s T,:‘l’ dC”, 

z: 

(37) 

(38) 

(39) 

where C is any hypersurface intersecting the particle’s trajectory at the point (t, q(t)). 
The above integral is finite (cf. [2]) and invariant with respect to changes of E, provided 
the intersection point with the trajectory does not change. It was shown in [I] that pi:’ is 
orthogonal to the particle’s four-velocity, i.e. p,“‘cP = 0. 

Finally, the momentum canonically conjugate to the particle’s position equals: 

Pk = pkk’” + py(t, q, v). (40) 

It is a sum of two terms: kinetic momentum pp and the amount of momentum py which 
is acquired by our system, when the particle’s Coulomb field is added to the background 
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(external) field. We stress that contrary to the standard formulation based on (3), our canon- 
ical momentum (40) is gauge-invariant. Now, Euler-Lagrange equations (23) read 

dj$” dp? ac 
----++ 

dt dt =ayk’ 
(41) 

or in a more transparent way: 

(42) 

Again, using definitions of ~1 and p;P’ one shows the following: 

Lemma 4. 

appt an/ ~-- 
ad ih+ 

= 0. (43) 

(For the proof see Appendix A). Hence, the term proportional to the particle’s acceleration 
vanishes. In Appendix A we show that the following identities hold: 

Lemma 5. 

, a$ 
- = -e J1-vz U”,fk”(t, ‘,) 

w 

= --e(Ek(t, q) + tklrnU’~‘% 9)). (44) 

We conclude that the Euler-Lagrange equations (23) for the variational problem based 
on L are equivalent to the Lorentz equations for the motion of charged particles: 

= dEk(t, 9) + fklrnU%t, 9)). (4.5) 

4. Hamiltonian formulation 

By Hamiltonian formulation of the theory we understand, usually, the phase space P 
of Hamiltonian variables (qk, pk) endowed with the symplectic 2-form w = dpk A dqk 
and the Hamiltonian function H (the energy of the system) defined on P. However, for 
time-dependent systems it is more convenient to replace this framework by the so-called 
homogeneous formulation. For this purpose we consider the evolution space P x R endowed 
with the pre-symplectic 2-form (i.e. closed 2-form of maximal rank): 

WH := dpk A dq” - dH A dt (46) 

(its “potential” pk dqk - H dt is called the Poincarb-Cartan invariant). Obviously, WH is 
degenerate on P x R and the one-dimensional characteristic bundle of WH consists of the 
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integral curves of the system in P x R (they may be considered as generated by the “super- 

Hamiltonian” which vanishes identically on the evolution space). This description may be 
called the “Heisenberg picture” of classical mechanics: physical states are not points in P 
but “particle’s histories” in P x R (see IS]). 

Let us construct the Hamiltonian structure for the theory based on our second-order 
Lagrangian C. Let P denote the space of Hamiltonian variables, i.e. (q, p, v. 7r), where 
p and 7r stand for the momenta canonically conjugate to q and v, respectively. Since OUI 
system is manifestly time-dependent (via the time dependence of the external field) WC pass 
to the evolution space endowed with the pre-symplectic 2-form 

Qx := d/7k A dq’ $ dnk A du’! - d3-I A dt. (47) 

where X denotes the time-dependent particle’s Hamiltonian. 
To tind ?t on P x R one has to perform the (time-dependent) Legendre transformation 

(q, 4, v, ii) -+ (q, p, v. 7r). i.e. one has to calculate q and + in terms of Hamiltonian 
variables, using formulae 

This transformation is singular due to linear dependence of l on ii and gives rise to the time- 
dependent constraints, given by Eqs. (25) and (40). The constraints can be easily solved. 
i.e. momenta pk and nk can be uniquely parametrized by the particle’s position qk, velocity 
11’ and the time t. Let P* denote the constrained submanifold of the evolution space P x R 
parametrized by (q, pki”, t). The reduced Hamiltonian on P* reads. 

‘Ft(t, 9, v) = &uk + @‘k - c = ~ 
JET 

+ &$(t. q, v). (49) 

Due to identity u@pjFt = 0 (cf. [I]) we have 

‘Fl(r, q, v) = -$i+ - p;;l’(t. q. v). 

Hence, we obtain: 

(SO) 

Theorem 6. The particle’s Hamiltonian equals the “- po ” component oj’ the ji,llonY~lg 
gauge-irzvariatzt, jbur-vecto, 

pEL := p)“c’” + pit(t. q. v) = mu,, + pF(t, q, v). (51) 

Using the laboratory-frame components of the external electromagnetic field we get 

p;)Yt, q, v) = - 
s 

d”x (DDo + BBo). (52) 

Now, let us reduce the pre-symplectic 2-form (47) on P*. Calculating pk = pk (q, pki”. t) 
and rk = Irk(q,p’“, t) from (25)-(40) and inserting them into (47) one obtains after a 
simple algebra: 

QN = dpp A dqW - e h,LL3 dqP A dq’. (53) 
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where y” = f and /I,,,, is the following four-dimensional tensor: 

Using techniques presented in Appendix A one easily proves: 

Lemma 7. 

3yinl 

1, = e17,,h.fh,, , 
ilql’ 

(54) 

(55) 

where by 

nh:=Ji+u ui 1r ti I-1 (56) 

we denote the projector on the hyperplane orthogonal to u/” (i.e. to the particle’s rest-frame 
hyperplane, see Appendix A). Therefore 

h jr,’ = q:fh - ~,,~,.fh,L = w,,,, - q,l,f”,dL (57) 

where a(,bg] := i(aaba - agb,). The form QN is defined on a submanifold of cotangent 
bundle T*M defined by the particle’s “mass shell” (pki”)’ = -rr2. 

Observe that the 2-form (53) has the same structure as Souriau’s a-form (7). They differ 
by the “curvature” 2-forms f and h only. However, the difference “h - f” vanishes iden- 
tically along the particle’s trajectories due to the fact that both fPLv and hELV have the same 
projections in the direction of up (see formula (10)). We conclude that the characteristic 
bundle of QN and 52s are the same and they are described by the following equations: 

4k = Uk, (58) 

ir“ = /CT i(g”’ - u~v’)(E/ + t,,jUiBi). (59) 

which are equivalent to the Lorentz equations (45). From the physical point of view these 
forms are completely equivalent. 

Appendix A 

Due to the complicated dependence of the Coulomb field Do and Bo on the particle’s 
position q and velocity v, formulae containing the respective derivatives of these fields 
are rather complex. To simplify the proofs, we shall use for calculations the particle’s 
rest-frame, instead of the laboratory frame. The frame associated with a particle moving 
along a trajectory [ may be defined as follows (cf. [1,3]): at each point (t, q(t)) E < we 
take the three-dimensional hyperplane & orthogonal to the four-velocity up (the rest-frame 
hypersu+ce). We parametrize Cr by Cartesian coordinates (xk). k = 1, 2, 3, centred at the 
particle’s position (i.e. the point x k = 0 belongs always to 5). Obviously, there are infinitely 
many such coordinate systems on Cr, which differ from each other by an O(3)-rotation. 
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To fix uniquely coordinates (xk), we choose the unique boost transformation relating the 
laboratory time axis i3/8y” with the four-velocity vector U := u@a/ay@. Next, we define 
the position of the a/axk-axis on .Ef by transforming the corresponding alayk-axis of the 
laboratory frame by the same boost. The final formula relating Minkowskian coordinates 
(y@) with the new parameters (t, xk) may be easily calculated (see e.g. [3]) from the above 
definition: 

.vOU. x9 := t + &_& x’u&). 

.v”(r. 2) :=@(r) + (Sl” + cp(“‘)lJ”V[)X’, (A.]) 

wherewedenotep(z) := (l/:)(1/2/1-:- 1) = l/&(1 +fi). 
Observe that the particle’s Coulomb field has in this co-moving frame extremely simple 

form: 

Do(x) = -& h(x) = 0, (A.21 

where r := 1x1. That is why the calculations in this frame are much easier than in the 
laboratory one. 

Let D)k and & denote the rest-frame components of the electric and magnetic field. They 
are related to Dk and & as follows: 

vk(X, ti 9, v) = J& p[(SL - J1_v?~(V”)V’Uk)D/(J) -~k;j~‘Bj(y)], (A.3) 

.13k(x. f: q, v) = d& ~_[(6~ - J1-v’~(V2)U’Uk)B,(J) $ tkijUi D’(y)]. (A.3) 

(the matrix (8; - ~~(p(v*)u’uk) comes from the boost transformation). 
The field evolution with respect to the above non-inertial frame is a superposition of the 

following three transformations (cf. [l-3]): 
_ time-translation in the direction of U, 
- boost in the direction of the particle’s acceleration &. 
- purely spatial O(3)-rotation around the vector w,, , 
where 

a !i .= &(cq + cp(v*)u”u[)B’. 

Therefore, the Maxwell equations read (cf. [2,3]): 

(A.3 

(A.6) 

(A.7) 

(A.8) 
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(the factor m is necessary, because the time t. which we used to parametrize the 
particle’s tra,jectory, is not a proper time along C but the laboratory time). 

On the other hand, the time derivative with respect to the co-moving frame may be written 
as 

Therefore, taking into account (A.7) and (A.8) we obtain 

(A.9 

(A. 10) 

(A.1 1) 

and 

(A.12) 

(A. 13) 

To calculate the derivatives of Dk and Bk with respect to the particle’s position observe that 

u + (8; + ~(v’)rr’Uk)j$. (A.14) 

Therefore 

Now, using (A. 10)-(A. 13) and (A. 15) and (A. 16) we prove Lemmas 2-5. 

A. 1. Proof of Lemma 2 

Observe that “interaction static moment” (29) in the particle’s rest-frame reads: 

Taking into account that 

int 
'k = --& (6; - ~~(O(v2)UiVk) Rj”‘, 

(A.15) 

(A. 16) 

(A.17) 

(A.18) 
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we obtain the formula for rrk in terms of I?jnt: 

----+cs; + cp(V2)UiUk)R? I 

Now, using (A. 12) one gets 

where 

Therefore 

thk an/ 
- = Aik,Rjnt - B;;?X;,,, 

ad ad 

where 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

Using the following properties of the function cp(:): 

2(&7(z) - (1 - :)-I + z&,7) = 0, (A.25) 

2$0’(L) - (1 - &$0(z) - (p*(z) = 0, (A.26) 

one easily shows that ALk, = 0. Moreover, observe that Bi;” defined in (A.24) is antisym- 
metric in (im). Therefore, to prove (36) it is sufficient to show that the quantity X;,n is 
symmetric in (im). Taking into account that Bk = •?‘~a~&, where &, stands for the 
rest-frame components of vector potential, one immediately gets 

tijk 
.I’ 

.yJX,@ djx = 
r3 s 

r-5(dkxk)(3x;x,r, - r2,girn) d’x. (A.27) 

& Et 

which ends the proof of (36). 



To prove (37) observe that 

(A.28) 

Now, using (A. 10) we obtain 

Due to the Gauss theorem 

(A.30) 

where do denotes the surface measure on a&. Moreover, observe that “interaction mo- 
mentum” in the particle’s rest-frame reads 

Pjint := t;km s e (DtBm + DkB;‘) d”x = -tikm +$m djx, 
4n s $ (A.31) 

Cl z, 

Therefore 

R;“l z JI-v2 pi”‘. (A.32) 

Using the relation between pp and Pjint 

f$’ = (a;, + &‘2)U’Uk)P;nt 

we finally get (37). 

A.3. Proof of Lemma 4 

Using (A.13) and (A.15) we obtain 

(A.33) 

(A.34) 

(A.35) 
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where 

Yjj := ; 
s 

~(32~~ - r26;)Dk d’x. 

Z 

Now, taking into account (A. 19) and (A.33) we have 

ap:r an1 ---_------_ 
ad a# 

ci,, P;? 

where 

atim 
Ci,, := A(“; + (p(“‘)u’uk) - ,/T-v?($ + &‘=)V”Vk)- d a$ ./‘?I 

+ 

63 

(A.36) 

(A.37) 

(A.38) 

One easily shows that due to properties (A.25) and (A.26) Ch, s 0, which ends the proof 
of (43). 

A.4. Proof’oj’Lemma 5 

Finally, to prove (44) let us observe that 

Now, due to (A.1 1) we get 

(A.39) 

(A.40) 

where we choose as two pieces of a boundary aC, a sphere at infinity and a sphere S(q)). 
Using the fact that in the Heaviside-Lorentz system of units & = &k and taking into 
account the formula (A.3) we finally obtain (44). 
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