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Abstract

New, gauge-independent, second-order Lagrangian for the motion of classical, charged test parti-
cles is used to derive the corresponding Hamiltonian formulation. For this purpose a (relatively little
known) Hamiltonian description of theories derived from second-order Lagrangians is presented.
Unlike in the standard approach, the canonical momenta arising here are explicitly gauge-invariant
and have a clear physical interpretation. The reduced symplectic form obtained this way is (al-
most) equivalent to Souriau’s form. This approach illustrates a new method of deriving equations
of motion from field equations. © 1998 Published by Elsevier Science B.V,

Subj. Class.: Classical mechanics, General relativity
1991 MSC: 70H40, 83C10, 459505
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1. Introduction

In [1] a new method of deriving equations of motion from field equations was proposed.
The method is based on a new idea of renormalization in classical field theory and a deep
analysis of the geometric structure of generators of its symmetry group. It may be applied
to any special-relativistic, Lagrangian field theory. When applied to electrodynamics, it
leads uniquely to a manifestly gauge-invariant, second-order Lagrangian £ for the motion
of charged test particles:

£ = Lparticle + Ling = —V' 1 — v2 (m — a"u" Mz, q, v)), (1)
* Corresponding author.
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where u!* denotes the (normalized) four-velocity vector

, 1 ,
@y = @' ') = s (1), (2)
[

and ¢ = u"V,u" is the particle’s acceleration (we use the Heaviside~Lorentz system
of units with the velocity of light ¢ = 1). The skew-symmetric tensor M;?“,(r, q,v) is
equal to the amount of the angular-momentum of the field, which is acquired by our
physical system, when the Coulomb field f,(f{,‘v) accompanying the particle moving with
constant velocity v through the space~time point y = (r, q) is added to the background
(external) field. More precisely, the total energy—momentum tensor corresponding to the
sum of the background field f,,, and the above Coulomb field decomposes in a natu-
ral way into a sum of (1) terms quadratic in the background field, (2) terms quadratic in
the Coulomb field, and (3) mixed terms describing their interaction. The quantity ML"“,
is equal to this part of the total angular-momentum A,,,. which we obtain integrating
only the mixed terms of the energy-momentum tensor (see Section 3 for detailed
discussion).

The above result is a by-product of a consistent theory of interacting particles and fields
(cf. [2,3]), called electrodynamics of moving particles.

We have proved in [1] that the new Lagrangian (1) differs from the standard one,

L = Lparticle + Lim = —V 1—v2 (m - eu”A#([. q). (3)

by (gauge-dependent) boundary corrections only. We have a similar situation in general
relativity, which may be derived either from the gauge-invariant, second-order Hilbert La-
grangian or — equivalently — from the first-order, coordinate-dependent Einstein Lagrangian,
quadratic with respect to the connection coefficients.

Both Lagrangians generate, therefore, the same equations of motion for test particles in a
given external field. In the present paper we explicitly derive these equations and construct
the gauge-invariant Hamiltonian version of this theory.

Standard Hamiltonian formalism, based on the gauge-dependent Lagrangian (3), leads
to the gauge-dependent Hamiltonian

H(1.q.p) = \/m? + (b + €A, @) + eAo(t. @), 4

and the gauge-dependent momentum
P = pEM — e Ar(r, @) = muy — eAr(t, Q) (3)
canonically conjugate to the particle’s position g*. This gauge-dependence leads to seri-
ous conceptual difficulties, if we want to describe quantized particles in a time-dependent
field (e.g. a plane wave), and have no privileged gauge (e.g. time-independent) at our
disposal.
As was observed by Souriau (see [5]), we may replace the non-physical momentum (5)
in the description of the phase space of this theory by the gauge-invariant quantity p*i".
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The price we pay for this change is that the canonical pre-symplectic form, corresponding
to the theory of free particles
2 = dpk" A dg*, (6)

M

has to be replaced by its deformation
Qs =02 —e fuydg" A dq". (7)

where e is the particle’s charge.

Both £2 and §25 are defined on the “mass-shell” of the kinetic momentum, i.e. on the
surface (p*™)2 = —m? in the cotangent bundle T*M over the space-time M (we use the
Minkowskian metric with the signature (—, +, 4, +)). These forms contain the entire in-
formation about dynamics: for free particles the admissible trajectories are those, whose
tangent vectors belong to the degeneracy distribution of §2. Souriau noticed that replac-
ing (6) by its deformation (7) we obtain the theory of motton of the particle in a given
electromagnetic field f,,.

The new approach, proposed in the present paper, is based on Lagrangian (1). It leads
directly to a perfectly gauge-invariant Hamiltonian, having a clear physical interpretation
as the sum of two terms: (1) kinetic energy mug and (2) “interaction energy” equal to the
amount of field energy acquired by our physical system, when the particle’s Coulomb field
is added to the background field.

When formulated in terms of pre-symplectic geometry, our approach leads uniquely to a
new form 2y

QN =2 —ehy,dg" A dg¥ . (8)
where

Buv = 2(fuw — g o) )

(brackets denote antisymmetrization), i.e. we prove the following:

Theorem 1. One-dimensional submanifolds of the particle’s mass shell, whose tangent
vectors belong to the degeneracy distribution of the form Q2 restricted to the shell, are
precisely the trajectories of test particles moving in the external electromagnetic field f,,,.

It is easy to see that both 25 and 2y, although different, have the same degeneracy
vectors, because i and f give the same value on the velocity vector u,:

Whio =1’ fo,. (10)

Hence, both define the same equations of motion. We stress, however, that our §2 is uniguely
obtained from the gauge-invariant Lagrangian (1) via the Legendre transformation.

The paper is organized as follows. In Section 2 we sketch briefly the (relatively little
known) Hamiltonian formulation of theories arising from the second-order Lagrangian.
In Section 3 we prove explicitly that the Euler-Lagrange equations derived from £ are
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equivalent to the Lorentz equations of motion. Finally, Section 4 contains the gauge-invariant
Hamiltonian structure of the theory. The most involved proofs are shifted to Appendix A.

2. Canonical formalism for a second-order Lagrangian theory

Consider a theory described by the second-order Lagrangian L = L(g', ¢, §') (to sim-
plify the notation we will skip the index “i” corresponding to different degrees of freedom
g'; extension of this approach to higher-order Lagrangians is straightforward). Introducing
auxiliary variables v = ¢ we can treat our theory as a first-order one with Lagrangian
constraints ¢ := ¢ — v = 0 on the space of Lagrangian variables (¢, ¢, v, v). Dynamics is

generated by the following symplectic relation:

d
dL(q,v,i;):E(pdq+71dv):pdq+pdq+7‘rdv+ﬂdi), (1D

where (p, m) are momenta canonically conjugate to ¢ and v, respectively. Because L is
defined only on the constraint submanifold, its derivative dL is not uniquely defined and
has to be understood as a collection of all the covectors which are compatible with the
derivative of the function along constraints (cf. [6}). This means that the left-hand side
18 defined up to (g — v), where p are Lagrange multipliers corresponding to constraints
¢ = 0. We conclude that p = v is arbitrary and (1 1) is equivalent to the system of dynamical
equations:

oL (12)
T
aL
y = — 13
14 3 (13)
oL
ov
The last equation impiies the definition of the canonical momentum p:
aL aL d /oL
= —g=—-—|—). 15
P 7T T T @ <ao> (13
Its time derivative
d [aL d? (oL
s — (=Y (2= 16
P dr(av) dﬂ(av) (16)
is equivalent, due to the second canonical equation (13), to the Euler-Lagrange equation:
SL  d? (AL d (aL) oL
8q de2 \ 90 dr \ dv dg

To obtain Hamiltonian description (see e.g. [4]) we simply apply the Legendre transforma-
tion to formula (11):

~ dH = pdg — gdp + s dv — vdm, (18)
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where H(g, p,v, ) = pv+ m 0 — L(q, v, v). In this formula we have to insert v =
v(q, v, m), calculated from Eq. (12). Let us observe that H obtained this way is linear with
respect to the momentum p. This is a characteristic feature of the Hamiltonians obtained
from a second-order theory.

In generic situation, Euler-Lagrange equations (17) are of the fourth-order. The corre-
sponding four Hamiltonian equations describe, therefore, the evolution of ¢ and its deriva-
tives up to third-order. Due to Hamiltonian equations implied by symplectic relation (18),
the information about successive derivatives of ¢ is carried by (v, w, p):
~ v describes ¢:

g=—-—=0v, (19)

and the constraint ¢ = O is reproduced due to linearity of A with respect to p,
7 contains information about §:

b= 20)
on

— p contains information about §:

) 0H odL

T T P .
- the true dynamical equation reads:

. JdH 0L

p= __8; = E . (22)

w

. Equations of motion from the variational principle

In this section we explicitly derive the particle’s equations of motion from the variational
principle based on the gauge-invariant Lagrangian (1). The Euler-Lagrange equations for
a second-order Lagrangian theory are given by

. aL 23)

Pk = ot Kk
where, as we have seen in the previous section, the momentum py canonically conjugate to
the particle’s position q" is defined as

_ac .
Pk = W — T (24)
and
oL 1 .
S e = e M @4 Y- (25)
Now,

vagint __ O ;gint [ agint __ O int , [ _m_int
WMy =uMgy+uM; =—ur +ues, | (26)
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where r™ and s/ are the static momentum and the angular-momentum of the interaction
tensor. They are defined as follows: we consider the sum of the (given) background field
fuv and the boosted Coulomb field f/(g‘{,,"” accompanying the particle moving with constant
four-velocity u and passing through the space—time point y = (¢, q). Being bi-linear in
fields, the energy—-momentum tensor 7' of the total field

ftotal . f;w + £y 27N

e Hy

may be decomposed into three terms: the energy—momentum tensor of the background
field 7114, the Coulomb energy-momentum tensor 7P which is composed of terms
quadratic in £’ and the “interaction tensor” T'™, containing mixed terms:

Tlo[al —_ Thcld + Tpﬂl‘liClC + Tim . (28)

Interaction quantities (labelled with “int”) are those obtained by integrating appropriate
components of 7™, Because all the three tensors are conserved outside of the sources
(i.e. outside of two trajectories: the actual trajectory of our particle and the straight line
passing through the space-time point v with four-velocity u), the integration gives the
same result when performed over any asymptotically flat Cauchy 3-surface passing
through v.

In particular, 7™ and s may be written in terms of the laboratory-frame components
of the electric and magnetic fields as follows:

int

ri"(t. q, v) :/ d*x (xx — qr)(DDg + BBy), (29)
b
s, Q, V) = €mij / dx (' —¢")(D x Bo + Dy x B)/, (30)
b

where D and B are components of the external field f, whereas Dg and By are components
of f0¥) je.

[ —v?

€
dr)x —qPP (1 — v + (v(x — q)/|x — q))})*/2
Bo(x; q, v) =v x Dp(x: q, v). (32)

Do(x; q,v) = (x—q), €19

It may be easily seen that quantities r,i(m and s,i,'1“ are not independent. They fulfill the

following condition:
sint — _emylpint, (33)

To prove this relation let us observe that in the particle’s rest-frame (see Appendix A
for the definition) the angular-momentum corresponding to T vanishes (cf. [1]). When
translated to the language of the laboratory frame, this is precisely equivalent to the above
relation.

Inserting (33) into (26) we finally get

!
v ;
”‘“éil—&>wh (34)
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The quantity r,i(nt depends upon time via the time dependence of the external fields (D(z, x),
B(z, x)), the particle’s position q and the particle’s velocity v, contained in formulae (31)
and (32) for the particle’s Coulomb field.

Now, we are ready to compute py from (24):

muyg 4 o oy ; 07k 4 amy
= v —— — _— U — U —
Pe= A= Tk Y g’ vl
: amy amy, [ Omy oy
kin ! ")
o — ——+U— — v _— = — . (35
A (5 ) ) )
Observe, that the momentum p; depends upon time, particle’s position and velocity but
also on particle’s acceleration. Hovewer, using (29) one easily shows (see Appendix A):

Lemma 2.
dm,  Omy
e B

Hence, the term proportional to #' vanishes. Moreover, the following lemma can be
proved (see also Appendix A):

Lemma 3.
877.']( [877.']( iﬂ[
— 4 — =— . 37
or " agl Tk B3P
where we denote
praw) = [ @D x B+ Dy x By ()

x

We see that p,i(“t is the spatial part of the “interaction momentum™:

pit(t.q.v) =[Tj;’; dzv, (39)
x

where X' is any hypersurface intersecting the particle’s trajectory at the point (7, q(z)).
The above integral is finite (cf. [2]) and invariant with respect to changes of X, provided
the intersection point with the trajectory does not change. It was shown in [1] that pli;“ is
orthogonal to the particle’s four-velocity, i.e. p}f‘u“ = 0.

Finally, the momentum canonically conjugate to the particle’s position equals:

kin int

Pk =p" + p (g V). (40)

Itis a sum of two terms: kinetic momentum p}ji“ and the amount of momentum p\™ which
is acquired by our system, when the particle’s Coulomb fieid is added to the background
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(external) field. We stress that contrary to the standard formulation based on (3), our canon-
ical momentum (40) is gauge-invariant. Now, Euler—-Lagrange equations (23) read
dpjlfin dp}(m _ Py

=—, 4
dr dr dg* @h

Or in a more transparent way:

() = () (2 ) )
dr \ 1 —v2 at dg! av! qu/

Again, using definitions of m; and p,i(m one shows the following:

Lemma 4.
Bp;;m om;
-1 . 4
avl gk “3)

(For the proof see Appendix A). Hence, the term proportional to the particle’s acceleration
vanishes. In Appendix A we show that the following identities hold:

Lemma 5.
apint apiﬂt o
P =TV )

= —e(Ex(t, @) + exim' B" (1. Q). (44)
We conclude that the Euler~Lagrange equations (23) for the variational problem based
on L are equivalent to the Lorentz equations for the motion of charged particles:

d my
dr <_——k- = e(Ex(t,q) + 6klmUIBm (t, q)) (45)
dt 1—v2

4. Hamiltonian formulation

By Hamiltonian formulation of the theory we understand, usually, the phase space P
of Hamiltonian variables (g%, px) endowed with the symplectic 2-form v = dp A dg*
and the Hamiltonian function H (the energy of the system) defined on P. However, for
time-dependent systems it is more convenient to replace this framework by the so-called
homogeneous formulation. For this purpose we consider the evolution space P x R endowed
with the pre-symplectic 2-form (i.e. closed 2-form of maximal rank):

wy = dpx A dg¥ — dH A dt (46)

(its “potential” py qu — H dt is called the Poincaré—Cartan invariant). Obviously, wg is
degenerate on P x R and the one-dimensional characteristic bundle of wy consists of the
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integral curves of the system in P x R (they may be considered as generated by the “super-
Hamiltonian” which vanishes identically on the evolution space). This description may be
called the “Heisenberg picture” of classical mechanics: physical states are not points in P
but “particle’s histories” in P x R (see [5]).

Let us construct the Hamiltonian structure for the theory based on our second-order
Lagrangian L. Let P denote the space of Hamiltonian variables, i.e. (q. p, v. ), where
p and 7 stand for the momenta canonically conjugate to q and v, respectively. Since our
system is manifestly time-dependent (via the time dependence of the external field) we pass
to the evolution space endowed with the pre-symplectic 2-form

22 = dpp A dgF + dm A doF — dH A dr. (47)

where H denotes the time-dependent particle’s Hamiltonian.

To tind H on P x R one has to perform the (time-dependent) Legendre transformation
(q.q,v,v) — (q,p,v.m). i.e. one has to calculate q and v in terms of Hamiltonian
variables, using formulae

L aL
Pk:@;—ﬂk ﬂkZW-
This transformation is singular due to linear dependence of £ on v and gives rise to the time-
dependent constraints, given by Eqs. (25) and (40). The constraints can be easily solved.
i.e. momenta py and 7 can be uniquely parametrized by the particle’s position g*, velocity
v* and the time ¢. Let P* denote the constrained submanifold of the evolution space P x R
parametrized by (q, p*", 1). The reduced Hamiltonian on P* reads.

(48)

H(t.q,v) = pkvk + nki}k — L= = + vkp,i(m(t, q.Vv). 49)
v2

VI -
Due to identity u"p}ft = 0 (cf. [1]) we have

m

H(I.q,v): “'l_—’:
V1 - v

— p(t, q. V). (50)
Hence, we obtain:

Theorem 6. The particle’s Hamiltonian equals the “—py" component of the following
gauge-invariant, four-vector

kin int

Pu=p, + oy, t.q.v)=mu, + pz“('t, q.v). 5h

Using the laboratory-frame components of the external electromagnetic field we get
Py (1.q.v) = —/ d*x (DDg + BBy). (52)

Now, let us reduce the pre-symplectic 2-form (47) on P*. Calculating py = pi(q, p*™. 1)
and ;= mr(q, p", 1) from (25)-(40) and inserting them into (47) one obtains after a
simple algebra:

2y = dpf" A dg" — ehy dg™ A dg”. (53)
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where ¢V = r and . is the following four-dimensional tensor:

o] ANt

ehyu(t,q.v) = %%g — %[Z—? ) (54)
Using techniques presented in Appendix A one easily proves:
Lemma 7.

o int

(j)l;/ = el1,] fu (55)
where by

Hu)‘ = 5#}‘+u#u}‘ (56)

we denote the projector on the hyperplane orthogonal to u# (i.e. to the particle’s rest-frame
hyperplane, see Appendix A). Therefore

h/w = nu}\fkv - ny}\fku = z(f;w - ul/t.fl}]/\u}hl (57)

where ajobg) 1= %(aabﬁ — agby). The form 2y is defined on a submanifold of cotangent
bundle T*M defined by the particle’s “mass shell” (p*i")? = —m?.

Observe that the 2-form (53) has the same structure as Souriau’s 2-form (7). They differ
by the “curvature” 2-forms f and 4 only. However, the difference “A — f” vanishes iden-
tically along the particle’s trajectories due to the fact that both f,,, and h,,, have the same
projections in the direction of u* (see formula (10)). We conclude that the characteristic
bundle of 2y and 25 are the same and they are described by the following equations:

gt =, (58)
=1 —y2 ;i;(gk/ ~ M) (Ef + 0" BY), (59

which are equivalent to the Lorentz equations (45). From the physical point of view these
forms are completely equivalent.

Appendix A

Due to the complicated dependence of the Coulomb field Dy and By on the particle’s
position g and velocity v, formulae containing the respective derivatives of these fields
are rather complex. To simplify the proofs, we shall use for calculations the particle’s
rest-frame, instead of the laboratory frame. The frame associated with a particle moving
along a trajectory ¢ may be defined as follows (cf. [1,3]): at each point (7, q(¢)) € ¢ we
take the three-dimensional hyperplane X; orthogonal to the four-velocity u* (the rest-frame
hypersurface). We parametrize X; by Cartesian coordinates (xk ). k = 1,2, 3, centred at the
particle’s position (i.e. the point x* = 0 belongs always to ¢). Obviously, there are infinitely
many such coordinate systems on X, which differ from each other by an O(3)-rotation.
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To fix uniquely coordinates (x*), we choose the unique boost transformation relating the
laboratory time axis 3/3y° with the four-velocity vector U := u*3/3y*. Next, we define
the position of the 8/3.x¥-axis on X; by transforming the corresponding /dy*-axis of the
laboratory frame by the same boost. The final formula relating Minkowskian coordinates
(v#) with the new parameters (¢, x5) may be easily calculated (see e.g. [3]) from the above
definition:

l
0, I !
V(. x) =t ————— x' (),
V1I=vin) :
v xy =gk ) + (8F + vk uad, (A.1)

where we denote p(z) := (1/2)(1/~/1 — 2z —1) = I//1 = z(1 + V1 — 2).
Observe that the particle’s Coulomb field has in this co-moving frame extremely simple
form:

ex
Do(x) = —. By(x) = 0, (A.2)

4mr-
where r := |x|. That is why the calculations in this frame are much easier than in the

laboratory one.
Let Dy and By, denote the rest-frame components of the electric and magnetic field. They
are related to Dy and By as follows:

I

Dy(x.t;q,v) = ﬁ[(ai ~ V1= v u)Di(y) — eijv' B/ ()], (A3)
—V
1 o
Bi(x,t:q,v) = ~W—:£[(ag — V1=Vl u) Bi(y) + et DY ()], (A4
-V

(the matrix (8,[( — 1 —v2 (p(vz)vl vx) comes from the boost transformation).

The field evolution with respect to the above non-inertial frame is a superposition of the
following three transformations (cf. [1-3]):
— time-translation in the direction of U,
— boost in the direction of the particle’s acceleration a
— purely spatial O(3)-rotation around the vector w,,,,

k

where
, | ) .
a = l—_?((ﬁlk + w(vz)vkvg)vl. (A.5)
1 2y kol ,
Wy = \/—1——_5 (p(V Wt €kim- (A6)
-V
Therefore, the Maxwell equations read (cf. [2,3]):
. a . . .
DN =1—v2 a—,_n[(e’"/;D" _ e"{-‘D'")wkx' . 6”“11((1 +(11X,')Bk] (A7)
x
. 0 . .
B'=+1—-v2 ——[(e’"lfB” — e”fB"’)a)kx’ + "L+ a'x)yDh, (A.8)

axm
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(the factor +/1 — vZ is necessary, because the time 7, which we used to parametrize the
particle’s trajectory, is not a proper time along ¢ but the laboratory time).
On the other hand, the time derivative with respect to the co-moving frame may be written

as

d _ 8 w0l AN A9)

—=—+4 VvV —+4+0"—F = = vt — . .
dr ot gk puk at ), vk

Therefore, taking into account (A.7) and (A.8) we obtain

3
(—) D' =1 —v2 "Ry, By (A.10)
U

ot
d
(5) B' = —1—v2e™mky Dy (A.11)
U
and
d D 1 8 dw mkDII nkym aak mn Bk
=D =V1-V af<’ ) - agarast. A
B ] ' da*
S B =124, [aw,k (e D" — D) ¥ 4 a—a—ek x,Bk] (A.13)
v v

To calculate the derivatives of D* and B¢ with respect to the particle’s position observe that

R T (A.14)
IV ) RO '
Therefore

0 n Uk nmi i PAUN) 7

—é?p =—\/’1———‘___V2,6 BmB,+(8k+<p(V )l} U/()a,‘D , (AIS)
9 . ) .

b= —lvf‘—z €™ 3 D; + (8L + (V)i vg) ;B (A.16)
q -V

Now, using (A.10)—(A.13) and (A.15) and (A.16) we prove Lemmas 2-5.

A.l. Proof of Lemma 2

Observe that “interaction static moment” (29) in the particle’s rest-frame reads:

RIM = /xk(DoD + BoB)d*x = ~—/ D’ d3x. (A17)

DY
Taking into account that

int __

1 . L
A (5' — V1= v2 p(vH)vi v ) RI™, (A.18)
VAN )
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we obtain the formula for 7, in terms of R}“‘:

1
T = ———==—=(8} + (v} )v'v)R".

V1—v?
Now, using (A.12) one gets

Iﬂ

m .
ml / J int
[ m - an / E1m R

vl

where
e x4 x K3
Xim = Eei.jk‘/ B d’x
P2

Therefore

omy,  omy S :

Y int imvy .

T gk = Aw R = By X

where

Al :i —-L—(S"-Fga(vz)v"v[)
ki avk /—1 ——Vz- {

2 1
—m[\/l—vz

i . ™ . . ™
el 18+ etvHv v — — (8 + oV vy — |.
k ! vk

(8 + so(vz)v"vk)]

m Y

, . da
81 2 !
=6 + (v v/)*—ai)k

B = (8 + p(v)' Uk)
(1=} da' 9a™  da' da™
auk 9ol aul avk )
Using the following properties of the function ¢(z):
20(2) — (1 =)™ + 20%(2) =0,

2¢'(z) — (1 — ) 'p(2) — ¢*(2) =0,

61

(A.19)

(A.20)

(A.23)

(A.24)

(A.25)

(A.26)

one easily shows that A’ « = 0. Moreover, observe that B,’;;" defined in (A.24) is antisym-
metric in (im). Therefore, to prove (36) it is sufficient to show that the quantity X;,, is
symmetric in (im). Taking into account that B = /"3, A,,. where A, stands for the

rest-frame components of vector potential, one immediately gets

xx
€ijk / Bt dx / r3 (A Bxix, — rlgim) dx,

% oY

which ends the proof of (36).

(A.27)
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A.2. Proof of Lemma 3

To prove (37) observe that

amy Ok

3 | : 20 Y i
b g (0N U s et (L) R (As
at T aql (af)U i vV I -'V"Z( k +(p(v )L UI‘) <81)U [ ( )

Now, using (A.10) we obtain

(3) Rmt / /xlxk k/maB d%

dt

-Vi-v / g, ) d'
+v 1= VZ/Eikmx—I;Bm dx.
/2
%
Due to the Gauss theorem

iXk XjXiXk 1
/ a,-( 5 ’v"‘B,,,) 3y = / "By do =0,

X, 02X

(A.29)

(A.30)

where do denotes the surface measure on 9 X,. Moreover, observe that “interaction mo-

mentum” in the particle’s rest-frame reads

. 7 k
P,-'m ‘= €ikm /(DSB’” + DkB(';')d3x = f—-eikm / x—zBm d3x.
T =

p 2
Therefore
(i) RM = /1 —v2 piM
at )y, ! e

Using the relation between p'lm and Piim
Pt = (8 + oV v u) P

we finally get (37).
A.3. Proof of Lemma 4

Using (A.13) and (A.15) we obtain

P . de'™ oa™
o let — /1 _ V2 (U Im P}m[ a- Ym,‘ ,

gul ! 3ol vl

-
R = L P (3] + oV u)Yi;,

ol T2

(A31)

(A.32)

(A.33)

(A.34)

(A.35)
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e X :
= po r—;(3xl‘xj - rzajl-‘)’Dk d*x. (A.36)
DX
Now, taking into account (A.19) and (A.33) we have
ap B o
R A

where
Cly = 308, + 0 ) — VT2 (8] + v 22
k= o T T PVIU T k T QWU T €jm

v ; ,
+l—_iv—2(a; + oY), (A.38)

One easily shows that due to properties (A.25) and (A.26) C,i, = (), which ends the proof
of (43).

A.4. Proof of Lemma 5

Finally, to prove (44) let us observe that

AT o A ( : 2 O\ i
Pk (2 — (s i ) 2) pint, A39
ar +v aql Py y Pk & + (P(V WU Uk a3 ” i ( )

Now, due to (A.11) we get

A ; 1
—) PM=y1-v2 ha / —D; do
ar [ 2

ot
x

=1 ~v2eD;(1,0). (A.40)

where we choose as two pieces of a boundary 0%, a sphere at infinity and a sphere S(rg).
Using the fact that in the Heaviside—Lorentz system of units D, = & and taking into
account the formula (A.3) we finally obtain (44).
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